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water clarity database assembled from Landsat imagery, primarily Thematic
Mapper and Enhanced Thematic Mapper Plus, for Minnesota lakes larger than 8 ha in surface area contains
data on more than 10,500 lakes at five-year intervals over the period 1985–2005. The reliability of the data
was evaluated by examining the precision of repeated measurements on individual lakes within short time
periods using data from adjacent overlapping Landsat paths and by comparing water clarity computed from
Landsat data to field-collected Secchi depth data. The agreement between satellite data and field
measurements of Secchi depth within Landsat paths was strong (average R2 of 0.83 and range 0.71–0.96).
Relationships between late-summer Landsat and field-measured Secchi depth for the combined statewide
data similarly were strong (r2 of 0.77–0.80 for individual time periods and r2=0.78 for the entire database).
Lake clarity has strong geographic patterns in Minnesota; lakes in the south and southwest have low clarity,
and lakes in the north and northeast tend to have the highest clarity. This pattern is evident at both the
individual lake and the ecoregion level. Mean water clarity in the Northern Lakes and Forest and North
Central Hardwood Forest ecoregions in central and northern Minnesota remained stable from 1985 to 2005
while decreasing water clarity trends were detected in the Western Corn Belt Plains and Northern Glaciated
Plains ecoregions in southern Minnesota, where agriculture is the predominant land use. Mean water clarity
at the statewide level also remained stable with an average around 2.25 m from 1985 to 2005. This
assessment demonstrates that satellite imagery can provide an accurate method for obtaining comprehen-
sive spatial and temporal coverage of key water quality characteristics that can be used to detect trends at
different geographic scales.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction
Minnesota's numerous lakes are important recreational and
aesthetic resources that add to the economic vitality and quality of
life of the state. Protecting and monitoring lake water quality is a
major concern for many state and local agencies and citizen groups.
For effective lake management, it is essential to have long-termwater
quality information on a broad regional and spatial scale. Unfortu-
nately only a small percentage of lakes in Minnesota are regularly
monitored by conventional methods, and historical water quality data
are sparse or lacking for most lakes. Although it is not possible to go
backwards in time and collect historical water quality information
using conventional field methods, Landsat images have been collected
and archived regularly since the early 1970s, enabling extraction of
some historical water quality information on lakes.

Landsat imagery has been used to estimate certain water quality
characteristics of lakes (e.g., chlorophyll and water clarity, usually
expressed in terms of Secchi depth) for over 30 years (e.g., Brown et al.,
1977; Dekker & Peters, 1993; Lathrop, 1992; Lathrop et al., 1991;
rces, University of Minnesota,
States. Tel.: +1 651 405 8081.
).
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Lillesand et al., 1983; Ritchie et al., 1990), but until recently such
reports largely described exploratory efforts involving only one or a
few lakes and/or short observation periods. One early exception is
Martin et al. (1983) who used semi-automated procedures to assess
the trophic status of around 3000 lakes in Wisconsin using Landsat
Multispectral Scanner (MSS) imagery. Kloiber et al. (2002b) and
Olmanson et al. (2001) described a practical and efficient procedure to
use Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper
Plus (ETM+) imagery for routine, regional-scale assessments of lakes
for water clarity, and Kloiber et al. (2002a) used this approach to
measure spatial patterns and temporal trends of ~500 lakeswithin the
seven-county metropolitan area of Minneapolis-St. Paul Minnesota.
Olmanson et al. (2002) expanded this work to a statewide level,
reporting the first census of Minnesota lakes for water clarity.
Chipman et al. (2004) have conducted census-level analyses on
lakes in Wisconsin using similar procedures for over 8000 lakes.

Using these methods we now have completed a 20-year, compre-
hensive water clarity database for lakes larger than ~8 ha (20 ac) in
area. The database includes results formore than 10,500 lakes based on
Landsat imagery at approximately five-year intervals for the time
period1985–2005 and includes almost 100,000 individual estimates of
lake water clarity, which may be the largest database on lake clarity
produced to date. The objectives of this paper are to describe how the
ater clarity census of Minnesota's 10,000 lakes, Remote Sensing of
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lake water clarity database was assembled, assess its accuracy, and
summarize initial analyses to evaluate spatial and temporal trends of
lake water clarity in Minnesota over the past 20 years.

2. Methods

The long-termgoal of our Landsatwork has been to develop reliable
and inexpensive techniques for synoptic measurements of key
indicators of lake water quality that can be used by management
agencies to complement water quality data obtained by ground-based
sampling programs. One of the prime management issues for inland
lakes is trophic state, and of the three most common indicators of
trophic state – total phosphorus (TP), chlorophyll a (chl a), and Secchi
disk transparency (commonly called Secchi depth, SD) – the latter two
are amenable to measurement by satellite imagery. SD is the most
commonlymeasured trophic-state indicator, and is strongly correlated
with the responses in the blue and red bands of Landsat TM/ETM+ data
(Kloiber et al., 2002b). Most of our work to date has involved
Fig. 1. Two Landsat paths of consecutive
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calibrating Landsat TM data with ground-based SD measurements
and estimating SDLandsat for all lakes in an image from the regression
equation developed in the calibration step. The results then can be
mapped as distributions of SDLandsat in the lakes, and the estimated
SDLandsat can be converted to a trophic-state index based on
transparency: TSI(SDLandsat)=60−14.41 ln(SDLandsat) (Carlson, 1977).

It is important to recognize that other factors besides phytoplank-
ton abundance (as measured by chlorophyll) may affect SD in lakes.
Most important of these non-trophic-state factors are humic color and
non-phytoplankton turbidity, including soil-derived clays and sus-
pended sediment. For this reason, we report our results based on SD
calibrations as satellite-estimated SDLandsat or TSI(SDLandsat), which
identifies the value as an index based on transparency.

2.1. Satellite imagery and lake reference data

We used imagery from the Landsat 4 MSS, Landsat 5 TM, and
Landsat 7 ETM+. The majority of the images were from Landsat 5 TM,
images used to assess water clarity.

ater clarity census of Minnesota's 10,000 lakes, Remote Sensing of
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which has been operating over the entire period. One Landsat 4 MSS
image was used in the 1985 assessment because a clear TM imagewas
not available for path 27 in this time period. Several Landsat 7 ETM+
images were used for 2000 assessment, and some Landsat 7 ETM+
with the scan line corrector off (SLC off) were used for the 2005
assessment. We found that Landsat 7 ETM+ (SLC off) imagery worked
as well for water clarity assessment as earlier (intact) ETM+ imagery
because only a representative sample of pixels is needed from each
lake and the missing data generally did not affect the results.

To create the database we targeted clear paths of consecutive
Landsat images from a late-summer index period (July 15–September
15, with a preference for August). This period was found to be the best
index period for remote sensing of water clarity in Minnesota
(Stadelmann et al., 2001). There are two advantages to using images
from this index period: (1) short-term variability in lake water clarity
is at a seasonal minimum, and (2) most lakes have their minimum
water clarity during this period. In addition, it is preferable to have
images from near anniversary dates for change detection.

For water clarity assessments it is critical to use imagery without
cloud cover or haze because clouds, cloud shadows, and haze affect
spectral-radiometric responses and cause erroneous results. Unfortu-
nately, clear paths (five consecutive rows from the same orbital path)
of imagery for all of Minnesota are rare. Fig. 1 illustrates some typical
imagery that was used for these assessments. Although these images
are clear through most of the state, path 29 has cloud cover in the
middle of the imagery, and path 27 has haze in the northern portion.
Therefore, we targeted the best available imagery, avoiding areas with
Table 1
Landsat image data and calibration model statistics for Minnesota water clarity database

Image date Path Rows Number Sensor Landsat Estim

Images % clea

8/13/1984 29 27–29 3 TM 5 75
9/16/1984 27 26–30 5 MSS 4 95
8/18/1985 27 29–30 2 TM 5 75
8/3/1986 29 26–28 3 TM 5 50
8/21/1986 27 26–29 4 TM 5 75
8/28/1986 28 26–28 3 TM 5 60
8/30/1986 26 27 1 TM 5 85
8/1/1987 26 29–30 2 TM 5 85
8/15/1987 28 28–29 2 TM 5 60
8/7/1990 28 27–30 3 TM 5 85
8/25/1990 26 29–30 2 TM 5 95
8/30/1990 29 26–29 4 TM 5 100
8/19/1991 27 27 1 TM 5 75
8/26/1991 28 29–30 2 TM 5 80
8/28/1991 26 27 1 TM 5 95
9/4/1991 27 26–30 5 TM 5 85
7/24/1994 29 28–29 2 TM 5 75
7/29/1995 27 27–30 4 TM 5 90
8/14/1995 27 26–28 3 TM 5 70
8/21/1995 28 26–30 5 TM 5 100
9/13/1995 29 26–28 3 TM 5 85
8/25/1996 26 27–30 4 TM 5 90
7/23/1999 28 26–30 5 ETM+ 7 95
9/11/1999 26 29–30 2 ETM+ 7 100
8/10/2000 28 28 1 ETM+ 7 70
9/5/2000 26 27 1 TM 5 60
9/12/2000 27 26–30 5 TM 5 95
8/28/2001 29 26–28 3 TM 5 95
8/13/2003 26 27 1 TM 5 50
9/5/2003 27 26–29 4 TM 5 90
8/5/2004 28 26–28 3 ETM+ SLC off 7 50
8/21/2004 28 26–28 3 ETM+ SLC off 7 50
9/16/2004 26 29–30 2 TM 5 100
7/30/2005 29 26–29 4 ETM+ SLC off 7 95
8/7/2005 29 26–29 4 TM 5 80
9/1/2005 28 27–30 4 TM 5 75
9/2/2005 27 28–30 3 ETM+ SLC off 7 80

aSD data used for calibration within no. of days of Landsat overpass.
bStandard Error of Estimate.
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clouds and haze (discussed further in Section 2.2). Lakes in areas with
cloud cover or haze in one image were assessed using a clear image
from a different time. For each time period (nominally 1985, 1990,
1995, 2000 and 2005), 2–4 years (e.g., 2000 used imagery from 1999,
2000 and 2001) were needed to acquire clear imagery for the entire
state (Table 1). Nonetheless, using paths of consecutive Landsat
imagery with 2–5 images collected from the same path at the same
time (instead of individual images) had several advantages, including
decreased processing time (because several images could be pro-
cessed simultaneously). The accuracy of the model also was improved
because of the larger number of data points available for calibration
and greater range of water clarity in calibration datasets with greater
spatial coverage (Minnesota lakes tend to have lower clarity in the
south and higher clarity in the north).

We acquired and processedmore than 100 Landsat images from 37
dates (Table 1) and extracted water clarity information for more than
10,500 lakes in each time period. Because of the overlap (about 35%) of
successive Landsat paths, the database includes almost 100,000 water
clarity data points, with around 60% of the lakes having two or more
data points for each time period. The number of times a lake was
assessed in each of the time periods depended on the overlap area and
number of images used in the assessment. The replicate data from
adjacent paths provided useful information to evaluate the reliability
of the Landsat results.

In-situ SD data for image calibration is readily available for most of
Minnesota because of volunteer efforts of the Citizen Lake Monitoring
Program (CLMP), combined with technical resources (training and
ated Daysa Model statistics Number

r N SD range (m) R2 SEEb Lakes assessed

8 17 0.9–5.5 0.91 0.144 3305
7 70 0.4–7.0 0.80 0.325 4573
7 37 0.3–3.2 0.85 0.223 997
7 19 0.9–5.8 0.71 0.287 2685
7 105 0.3–7.0 0.79 0.324 4405
3 56 0.6–6.1 0.86 0.203 3646
9 22 0.9–7.3 0.94 0.159 1384
8 16 0.3–6.4 0.90 0.319 244

10 25 0.3–4.3 0.82 0.302 1237
3 211 0.15–9.5 0.77 0.322 4436
7 29 0.3–7.3 0.77 0.362 456
3 116 0.18–7.2 0.77 0.375 3784
7 36 0.4–8.4 0.88 0.279 1539
7 27 0.2–6.4 0.79 0.338 700
7 34 0.6–9.9 0.77 0.374 1462
3 169 0.15–9.1 0.79 0.372 4390
5 52 0.15–6.4 0.81 0.267 1534
3 212 0.15–8.2 0.83 0.297 4965
3 87 0.3–7.0 0.84 0.311 2433
3 278 0.15–8.8 0.83 0.265 5456
3 93 0.4–6.7 0.82 0.227 3310

10 30 0.15–8.2 0.86 0.406 1470
3 268 0.25–6.8 0.81 0.296 4773
7 21 0.3–6.4 0.92 0.317 487
3 89 0.15–7.0 0.89 0.249 972
7 16 0.8–5.5 0.96 0.141 900
3 227 0.15–14.6 0.82 0.370 4438
3 124 0.3–8.5 0.89 0.220 3768

10 21 0.5–7.3 0.81 0.381 1247
3 219 0.15–8.1 0.84 0.326 4569
3 139 0.3–8.2 0.84 0.226 2671
3 171 0.6–6.7 0.86 0.240 3694
7 13 0.3–5.5 0.90 0.318 425
3 141 0.6–8.8 0.72 0.297 3760
3 127 0.3–8.2 0.81 0.302 3415
3 152 0.15–5.8 0.85 0.297 2983
3 127 0.15–5.8 0.83 0.343 2450
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management) of the Minnesota Pollution Control Agency (MPCA). The
CLMP program began in 1973 at the University of Minnesota's
Limnological Research Center. Initially, fewer than 200 lakes were
monitored each year, but starting in 1985 the number began to
increase and reached ~1100 in 2005. Nonetheless, only about 10% of
the lakes statewide (12% in the seven-county Twin Cities metropolitan
area) were monitored for water clarity in 2005. In some parts of the
state the fraction monitored is much lower. CLMP-monitored lakes
tend to be recreational lakes that are larger (median size of 75 ha and
average size of 333 ha), than Landsat-monitored lakes (median size of
18 ha and average size of 99 ha). It also should be noted that CLMP
lakes are selected by interest of volunteers and not randomly.
Therefore, the data cannot be reliably extrapolated to the larger
population of Minnesota lakes, and such use may result in biased and
misleading conclusions (Peterson et al., 1999).

To calibrate the imagery we used water clarity data (in-situ SD)
usually collected within ±3 days of the image acquisition date, but the
window was increased to up to ±10 days in several cases where data
were sparse. Kloiber et al. (2002b) found that ground observations
within one day of the satellite yielded the best calibrations, but the
larger number of ground observations with the longer time window
offsets some of the loss of correlation. Chipman et al. (2004) had
similar findings and determined that model parameter values did not
change significantly with a wider time window. We found that for
images where in-situ data were sparse the larger number of ground
observations with longer time window improved the calibration of
the imagery. For example, for comparisons of models using in-situ
data acquired within ±1 and ±7 days of an August 25, 1996 TM image,
the number of ground observations increased from 12 to 26 with the
longer time window and R2 values increased from 0.85 to 0.88, and
the Standard Error of Estimate (SEE) decreased from 0.444 to 0.375.
We conclude that measurements taken within a few days (±3 to
10 days) of image acquisition provide strong relationships. This is
becausewater clarity (Secchi depth) usually does not exhibit large and
rapid fluctuations in a given lake during the relatively stable late-
summer index period (although there are strong seasonal patterns in
clarity) (Stadelmann et al., 2001). For a few images where data were
too sparse (less than 15 data points) or not well distributed
throughout the range of typical water clarity conditions, supplemental
data were acquired from water clarity measurements extracted from
the overlap area of adjacent Landsat images (see Olmanson et al., 2002
for more information on this method). The number of SD measure-
ments available for calibration ranged from 13–16 in the Arrowhead
and Driftless areas in the northeast and southeast, respectively, to 278
Fig. 2. Examples of Landsat TM band combinations 4,2,1 (RGB) typically used to highlight gre
28, August 8, 2000).
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through the middle of the state in Landsat path 28. The average
number of measurements used for image calibration was 97. The
calibration data generally had a wide range of SD values (Table 1).

Field-collected SD data from the CLMP program also were used to
validate the accuracy of Landsat water clarity database (discussed in
Section 2.3). The average water clarity for each field data collection
point and each lake polygon (that had field data) was calculated from
late-summer (July 15 through September 15) CLMP SD data for each of
the time periods.

2.2. Image preprocessing and classification

The image classification procedures used for this paper are
documented by Olmanson et al. (2001), and the rationale for the
procedures was described by Kloiber et al. (2002b). Some modifica-
tions were made as appropriate when experience and advances in
software and computer hardware enabled simpler or improved image
processing procedures.We used Leica Geosystems ERDAS Imagine and
ESRI ArcGIS for image processing. Acquiring a representative sample
from the image for each lake was a primary objective, and image
samples generally were near the center of a lake, where reflectance
from aquatic vegetation, the shoreline, or the lake bottom did not
affect the spectral-radiometric response.

Initial preprocessing included image rectification using road inter-
sections from a Minnesota Department of Transportation highway GIS
data layer as ground control points (GCPs).Weused ~40well distributed
GCPs, with a positional accuracy (RMSE) on the order of ±0.25 pixels, or
7.5 m. The next step, if necessary, was to combine consecutive images
from the sameorbital path and date into one uniform image.We clipped
areas covered with clouds from this image and checked for haze by
visually inspecting the image using the (RGB) band combination 1,6,6
(TM1 (Blue), TM6 (Thermal), TM6 (Thermal)). Fig. 2 illustrates a Landsat
TM image using the (RGB) band combination 4,2,1 typically used to
highlight green vegetation and (RGB) band combination 1,6,6 used to
highlight haze as a red color. Areaswith high levels of hazewere clipped.
Because each image (path) was calibrated individually with field data,
we did not perform atmospheric correction or normalization of the
image brightness data.

Once image preprocessing was complete, a “water-only” image was
produced by performing an unsupervised classification method based
on ISODATA clustering. Because water features have different spectral
characteristics from terrestrial features, water pixels were grouped into
one or more distinct classes that could be easily identified. We then
masked out terrestrial features to create awater-only image, performed
en vegetation and 1,6,6 which can be used highlight haze and cloud cover (Path 28/Row

ater clarity census of Minnesota's 10,000 lakes, Remote Sensing of
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an unsupervised classification on this image, and generated spectral
signatures of each class. We used these signatures, along with the
locationwhere the pixels occur, to differentiate classes containing open
water and shallow water (where sediment and/or macrophytes affect
spectral response). These areas tend to have high spatial variability
compared to open-water portions of the lake. Based on this analysis, we
removed the affected pixels. Next, the spectral-radiometric data from
the “open-water” image were obtained to develop relationships with
Fig. 4. Water clarity assessment comparison in the over

Please cite this article as: Olmanson, L. G., et al., A 20-year Landsat w
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measured SD. For these assessments, we used a lake polygon layer
(Olmanson et al., 2001) to help automate the process. The polygon layer
used for this purpose has 12,049 polygons delineating lakes or lake
basins. Lakes with multiple basins were split into separate polygons.
The polygon layer was constructed to include all Minnesota lakes and
open-water wetlands 8 ha and larger. We used the signature editor in
ERDAS Imagine to extract spectral data from the image for all lakes in
the image.
lap areas of paths 27–29 for 1995 Landsat images.
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Using log-transformed SD data as the dependent variable and TM
band 1 and the TM1:TM3 ratio as independent variables, we performed
least-squares multiple regression using the general form:

ln SDð Þ ¼ a TM1=TM3ð Þ þ b TM1ð Þ þ c

where a, b and c are coefficients fit to the calibration data by the
regression analysis, ln(SD) is the natural logarithm of Secchi depth for
a given lake, and TM1 and TM3 are the Landsat brightness values for
the selected lake pixels in the blue and red bands, respectively. Kloiber
Fig. 5. Scatter plots of Landsat TSI(SD) vs. In-situ late-sum

Please cite this article as: Olmanson, L. G., et al., A 20-year Landsat w
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et al. (2002b) found that this band combination was a dependable
predictor of SD.

The model developed for each path of Landsat images was applied
to brightness values (digital numbers) for the sample of pixels from
each lake to calculate water clarity (SDLandsat). The number of lakes
assessed per image (path of consecutive images from same date)
ranged from 244 to 4965 with an average of 2675 lakes. To create
maps the computed SDLandsat data were linked to the lake polygon
layer. The lake-level polygon method has an advantage over pixel-
mer lake polygon mean TSI(SD) for each time period.

ater clarity census of Minnesota's 10,000 lakes, Remote Sensing of
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level maps because by generating a single clarity value for each lake
the data can be easily included in a water clarity database and used in
other analyses. The final image processing step was to edit themaps to
remove lakes with faulty results due to such conditions as haze, small
clouds, or cloud shadows that were not clipped. This was accom-
plished using the RGB 1,6,6 band combination to highlight areas with
haze which was used to target problem areas.
Fig. 7. Minnesota 2005 lake clarity with

Please cite this article as: Olmanson, L. G., et al., A 20-year Landsat w
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2.3. Water clarity database development

To create thewater clarity database the final classifications for each
path of Landsat imagery were combined and minimum, maximum
and mean water clarity values were calculated for each lake in each
time period. The number of lakes assessed for each time period ranged
from 10,516 in ~2000 to ~11,241 in ~2005. Because the image
processing procedure targeted clear imagery and open-water areas,
some lakes were not assessed in a given time period. The main reason
for some lakes not being assessed was pervasive presence of aquatic
vegetation in wetlands and shallow lakes resulting in insufficient
unaffected pixels for accurate water clarity assessment. Other reasons
included severe phytoplankton blooms (floating mats of phytoplank-
ton were masked off since their spectral characteristics are more
similar to green vegetation than water), and clouds or haze.

3. Results and discussion

3.1. Evaluation of Landsat estimates of lake clarity

Production of the five semi-decadal lake clarity assessments
required 109 Landsat images from 37 dates. Models developed for
each path of imagery from the same date showed strong relationships
between ground-based water clarity data (SD from the CLMP) and
spectral-radiometric responses of the Landsat data. The SD range, R2,
SEE and the number of lakes for each model are listed in Table 1. R2

values for the regression relationships to establish the coefficients of
the model equations ranged from 0.71 to 0.96 (average of 0.83) and
SEE ranged from 0.141 to 0.406 (average 0.292). Given that ground-
based measurements of SD are themselves subject to some impreci-
sion, we consider these relationships to be very good. Similar strong
relationships also were found by Kloiber et al. (2002a) and Chipman
et al. (2004). In contrast, Nelson et al. (2003) reported low r2 values
county and ecoregion boundaries.

ater clarity census of Minnesota's 10,000 lakes, Remote Sensing of
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(0.43) that they attributed to the distribution of SD values in their
calibration dataset. Our study and Chipman et al. (2004) obtained
strong relationships for images over awide range of SD values some of
which would be similar to those used in Nelson et al. (2003). Cloud
cover was present in much of the imagery used by Nelson et al. (2003)
and this likely affected the spectral-radiometric responses.

To evaluate the comparability of the different sensors and images
from the different dates used to create the water clarity database we
examined lake water clarity data from the overlap areas of adjacent
Landsat images. First, we examined how well water clarity results
from a September 1, 2005 Landsat 5 TM image compare with results
from a September 2, 2005 Landsat 7 (SLC off) image. Because the
images were within one day of each other we assumed that water
clarity conditions would be very similar for both images and thewater
clarity assessments would be highly correlated; this was the case.
Fig. 3 shows the overlap area of the images and a scatter plot with
regression line of the Landsat-inferred TSI(SDLandsat) values for the
overlap area of each image. The two images were calibrated
separately, but because of the geographic overlap and closely spaced
image acquisition dates, some calibration data from the overlap area
were used to calibrate both images. The calibration fits were similar
for the two images (R2=0.85 for September 1 and R2=0.83 for
September 2), but the model coefficients (especially a) were rather
different. Nonetheless, agreement between the two sets of Landsat-
inferred TSI(SDLandsat) values is very strong (r2=0.94), and the results
parallel the 1:1 line, indicating that water clarity results from the two
sensors and dates are highly comparable.

To evaluate the variability in SDLandsat results over the range of the
late-summer index period, we examined the overlap areas of three
late summer 1995 Landsat TM images (path 27, July 29, Path 27,
August 14 and path 29, September 13) with an August 21 path 28
Landsat TM image (Fig. 4). Although the relationships are not as
strong as those for images acquired within one day, they are still
strong with r2 values of 0.87, 0.89 and 0.80. The range of image dates
(July 29–September 13) covers most of the late-summer index period
(July 15–September 15). The August 14 image is closest in time to the
August 21 image, and regression line for the two sets of results is close
to parallel with the 1:1 line indicating similar water clarity conditions.
The regression line for the July 29 image is slightly skewed toward
higher water clarity in the eutrophic lakes, whichmay reflect seasonal
differences in the early portion of the late-summer window. The
regression line for the September 13 image is also close to parallel
Fig. 8. Box plots of 2005 Minnesota lake clarity
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with the 1:1 line indicating a similar distribution of water clarity
conditions.

The results in Fig. 4 suggest that restricting satellite-based lake
clarity assessments to the late-summer index window limits, but does
not eliminate minor seasonal differences. A further narrowing of the
window (e.g., to August images only), might further decrease
uncertainties caused by seasonal variations, but considering the
frequency of cloud cover in Minnesota (Kloiber et al., 2002b) and
that the current eight-day overpass cycle of Landsats 5 and 7 is not
sustainable (both Landsats 5 and 7 have exceeded their expected life),
this option does not appear to be practical. Considering the availability
of othermeasures formost lakes are sparse and subject to some errors,
we regard the accuracy of Landsat water clarity assessment using a
two-month late-summer index period to be acceptable, especially
since this method allows all lakes to be assessed in a uniform way.

The overall objective of this study was to create a comprehensive
statewidewater clarity database that representswater clarity conditions
in five semi-decadal time periods. Therefore, it is important to assess
how well the Landsat water clarity database, which consists of the
average Landsatwater clarity value calculated for each lake polygon (see
Section 2.3), relates to field-measured water clarity data, which is the
average late-summer CLMP SD data (see Section 2.1), for each time
period. Regression analyses were conducted with Landsat-derived TSI
(SDLandsat) as the dependent variable and average field-measured late-
summer TSI(SD) as the independent variable for each time period and
for a combined dataset containing 6216 field observations. The r2 values
for the five time periods range from 0.77 to 0.80 (Fig. 5), and r2=0.78 for
the combined dataset (Fig. 6), indicating a consistently strong relation-
ship between Landsat-derived and field-measured late-summer SD.
However, because small percentages (4.1–8.1%) of the CLMP SD data
used to calculate the average late-summer CLMP SD also were used for
image calibrations and could bias validation of the relationship, an
independent subset was created. The independent subset was the
average late-summer CLMP SD data for lakes not used to calibrate any of
the images in each time period. Values of r2 from regression analyses for
the independent subsetwere slightly lower than the full dataset for each
time period and range from 0.74 to 0.79 with an average of 0.76, which
still represents a consistently strong relationship between Landsat-
derived and field-measured late-summer SD. This is especially true
considering that some of the reduction in r2 may be due to data year
disparity, since each time period consists of multiple years of data (see
Section 2.1) and removal of the calibration lakes left data from years
by ecoregion and statewide for 1985–2005.
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without imagery to validate the water clarity of a lake. The regression
lines closely match the 1:1 line for each time period and for the
combined dataset indicating the Landsat-derived and field-measured
SD results are comparable. Thus, Landsat images from the late-summer
index period provide a reliable estimate of SD for the date of the imagery
and the combined database provides a reasonable estimate of late-
summer water clarity for each time period.

However, there is some lack of agreement for lakes with low water
clarity (SD b0.25 m or TSI N80), for which Landsat SDLandsat values
generally were larger than field-measured values. This may reflect
issues related to spatial variability of water clarity. Surface blooms of
phytoplankton in eutrophic lakes are subject to concentration or
dispersal by wind, which may result in variable concentrations of
phytoplankton and SD across a lake (Dekker et al., 2002). The
Fig. 9. Lake clarity distribution s
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procedure used to extract brightness data from Landsat images
targeted the deepest and most central part of the lakes, which also
may have the highest water clarity and may account for the
differences from the field measurements for low clarity lakes.

3.2. Spatial and temporal analyses

Having evaluated the accuracy of the water clarity database and
determined that we have a reasonable estimate of water clarity for the
entire population of lakes in Minnesota for five semi-decadal time
periods from 1985 to 2005, we can investigate spatial patterns and
temporal trends of water clarity in Minnesota. To do that we analyzed
spatial and temporal distributions of water clarity at the statewide,
ecoregion and individual lake scales.
tatewide and by ecoregion.
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Water clarity in Minnesota tends to be low in the south and
southwest and higher in the north and northeast (Fig. 7). At the
statewide level water clarity has remained stable between 1985 and
2005 (Fig. 8) with mean water clarity of 2.25 m. One interesting
discovery from the data is thatmany of the clearest lakes are abandoned
iron ore mine pits that have filled with water. The increase in lakes with
water clarity around 15m in the 2005 time period (Fig. 8) needs further
investigation, but could be due to changes in some mine operations.

3.2.1. Ecoregions
Lakes in Minnesota span seven natural ecoregions which differ in

vegetation, soils, geology, climate, hydrology, and land use. We used
the EPA Level III Ecoregions of Minnesota for analysis (Minnesota Land
Management Information Center, 2006). That the distribution of water
clarity differs among the ecoregions is apparent from the box plots for
2005 in Fig. 8. Water clarity distributions at the statewide level and for
the four ecoregions that include most (96%) of Minnesota's lakes are
shown in Fig. 9. The Northern Lakes and Forest Ecoregion (NLF), which
has 46% of the state's lakes, has results concentrated in the higher
water clarity classes and an average SDLandsat of 3.09 m. The North
Central Hardwood Forests Ecoregion (NCHF), which has 38% of the
state's lakes, has a wide range of water clarity and an average SDLandsat

of 1.58 m. Lakes in the Western Corn Belt Plains Ecoregion (WCBP),
which has 7% of the state's lakes, generally have lower water clarity
(average SDLandsat of 0.95 m). The Northern Glaciated Plains Ecoregion,
with 6% of the lakes, also has low water clarity (average of 1.27 m).

Over the 1985–2005 period, average water clarity remained
relatively stable in lakes of the NLF and NCHF ecoregions but declined
Fig. 10. Minnesota lake clarity 2005 quarti
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slightly in the WCBP, where the highest average clarity (1.07 m)
occurred in 1990 and the lowest (0.85 m) occurred in 2005. There also
appears to be a trend of declining water clarity in the NGP ecoregion
where the highest averagewater clarity (1.50 m) occurred in 1985 and
the lowest (1.12 m) in 2005.

3.2.2. Individual lakes
Water clarity is a good indicator of user perception ofwater quality in

lakes (Heiskary & Walker, 1988) and usually reflects the amount of
phytoplankton or sediment present. Although lakes in Minnesota
generally are more eutrophic (and less clear) in the south and less
eutrophic (and clearer) in the north, at the regional and sub-regional
levels conditions are quite variable. Fig. 10 shows the quartile
distribution of water clarity within each ecoregion. While there is
some clustering of lakeswithin higher and lower water clarity quartiles,
lakes from the opposite quartiles are distributed throughout the
ecoregions and state. The range of water clarity conditions throughout
the state and even within ecoregions thus in most cases is large. The
wide range of water clarity likely reflects both natural characteristics
(e.g., depth, area and watershed) and effects of anthropogenic
characteristics (i.e., land-use and management practices).

3.2.3. Comparison with other states
The above results contrast to the findings by Peckham and Lillesand

(2006) who analyzed Landsat-estimated water clarity for 2467
Wisconsin lakes and found increasing water clarity in Wisconsin
lakes at the statewide level and in some ecoregions. At the statewide
level they reported a significant increase in mean water clarity of
le distribution within each ecoregion.
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0.75m from1980 to 2000. TheNLF ecoregion inWisconsin had amean
water clarity increase of 0.81 m, and the NCHF ecoregion had an
increase of 0.80 m.

Our results indicate that water clarity has been stable statewide in
Minnesota and also within the NLF and NCHF ecoregions. It is not
certain why there should be differences between the Minnesota and
Wisconsin assessments, but different assessment designs could be a
contributing factor. The methods we used are similar to the methods
Peckham and Lillesand (2006) used for their 1990 and 2000 water
clarity assessments, but their 1980 assessment was conducted using
different methods and Landsat MSS imagery. It is uncertain whether
the MSS assessment is entirely consistent with later TM-based
assessments. Other differences between the two studies include the
time frames of analysis — ten-year intervals (1980 to 2000) in
Wisconsin vs. five-year intervals (1985 to 2005) in Minnesota, and
the lakes assessed for temporal trends in Wisconsin were limited to
those assessed in the MSS study (around 30% of the lakes in the later
assessments).

4. Conclusions

For effective environmental management, it is essential to have
accurate long-termwater quality information on a broad regional and
spatial scale. Development and evaluation of a Minnesota statewide
20-year water clarity census of over 10,500 lakes has demonstrated
that satellite imagery can provide an accurate method to obtain
comprehensive spatial and temporal coverage of a key water quality
characteristic. Although traditional monitoring programs are impor-
tant, they largely rely on volunteers or agencies that target lakes of
interest (i.e., are not randomly selected). Using data from such
programs to extrapolate to larger regional assessments likely will
lead to biased conclusions. However, by using the data from these
programs to calibrate Landsat imagery, the entire population can be
reliably assessed.

The Landsat water clarity database is being used in several
research efforts where available field data were sparse. For example,
Lindon et al. (2005) used it to target lakes in Cass and Crow Wing
Counties that were large (N200 ha), lacked water quality data and
were more eutrophic than typical for the area for additional
monitoring. It was used inwest central Minnesota for nutrient criteria
research to target shallow lakes that represented a range of trophic
status but lacked data (Heiskary & Lindon, 2005). The database was
also used by Baker et al. (2004) to correlate water clarity to common
loon populations. The comprehensive water clarity database can also
be used in conjunction with morphometric, land-use and demo-
graphic data to analyze spatial patterns and temporal trends in
lake clarity throughout the state and develop better understanding
of the factors that affect these patterns and trends. Results of such
analyses will aid local and state agencies in making informed
decisions about development policy and improve the management
of lake resources.

This study also demonstrates the significance of the Landsat
program of continuous collection and archiving of moderate resolu-
tion imagery as a historical record of an important water quality
variable. The current state of the Landsat program is unfortunate with
both Landsats 5 and 7 operating past their expected life times and no
replacement is expected for several years, which could result in a data
gap. However, with recent technological advances, there also is great
potential for an enhanced Landsat system that could improve
monitoring of water resources. A new system with higher frequency
of image acquisition, improved spectral bands, and improved atmo-
spheric correction and radiometric calibration capabilities could
enable the development of a universal equation that could minimize
the need for calibration with field data. Even if these advances do not
happen, there already is a massive 35-year archive of Landsat imagery
available for regional assessments of water clarity.
Please cite this article as: Olmanson, L. G., et al., A 20-year Landsat w
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Although assessment of water clarity is important, it is also
important to make the results easily available to lake managers,
government agencies and the public. The availability of such
information is essential for a well-informed public and a prerequisite
for effective environmental management. To make the data available
we have created “LakeBrowser,” a MapServer application, at http://
water.umn.edu/, where data for individual lakes, counties, and
ecoregions can be accessed.
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